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Figure 1: Wearable facial electromyography (EMG) measured distally has enabled the simultaneous EMG and facial video 
recording without electrodes obstructing the face. This study investigated the extent to which covert behavior measured by 
EMG contributes to the identifcation of posed and spontaneous smiles, and compared it with computer vision (CV) identif-
cation. 

ABSTRACT 

Positive experiences are a success metric in product and ser-
vice design. Quantifying smiles is a method of assessing them 
continuously. Smiles are usually a cue of positive afect, but 
they can also be fabricated voluntarily. Automatic detection 
is a promising complement to human perception in terms of 
identifying the diferences between smile types. Computer 
vision (CV) and facial distal electromyography (EMG) have 
been proven successful in this task. This is the frst study 
to use a wearable EMG that does not obstruct the face to 
compare the performance of CV and EMG measurements in 
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the task of distinguishing between posed and spontaneous 
smiles. The results showed that EMG has the advantage of 
being able to identify covert behavior not available through 
vision. Moreover, CV appears to be able to identify visible 
dynamic features that human judges cannot account for. This 
sheds light on the role of non-observable behavior in dis-
tinguishing afect-related smiles from polite positive afect 
displays. 
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1 INTRODUCTION 

Measuring positive experiences in a continuous and accurate 
manner is of utmost importance. They are a metric of success 
in our personal life and in product and service design. In 
a user-centered design process, design concepts are drawn 
from existing user needs or bad experiences. The concept 
is then prototyped, and the new user experience is assessed 
with a view to improving it [24, 29]. Hence, unbiased user 
feedback is critical. This assessment is often performed via 
qualitative or quantitative self-report methods. To assess the 
dynamics of mental health and user experience it is essential 
to measure the frequency and patterning of mental processes 
in every-day-life situations, including afective experiences 
[10]. The Experience Sampling Method (ESM) [28] provides 
a good approximation of what the user is feeling when using 
a product. However, it requires a logging tool that intermit-
tently prompts users to report their experience, and that 
ultimately alters the user’s afective state. 
An alternative way of assessing human afect in a con-

tinuous manner is to measure and interpret behavior and 
electrophysiological cues automatically using artifcial intel-
ligence (AI) technology. These methods have the potential 
to provide uninterrupted, objective measurements with high 
temporal resolution. The continuous logging of afective 
experience could trigger qualitative ESM entries or the re-
action of an artifcial agent after an afective experience has 
been identifed. Perhaps the most widely used measurement 
modality is computer vision (CV), followed by electromyo-
graphy (EMG) and other sensors for measuring autonomic 
body responses [6, 23, 47]. CV and EMG are used to identify 
and quantify behavior co-occurring with afective experi-
ences such as facial expressions. However, humans are able 
to display positive facial expressions even when they are not 
experiencing any emotion. In particular, when evaluating a 
product or service, avoiding polite displays of positive expe-
riences is desirable to better identify points of opportunity. 
Thus, it is also important to distinguish between posed and 
spontaneous facial expressions of positive afect to avoid 
bias in the evaluation process. 

Positive afect is prototypically expressed in the form of a 
smile. According to the Facial Action Coding System (FACS) 
[14], a smile is often a combination of a lip corner puller 
(AU12) and a cheek raiser (AU06). AU06 corresponds to the 
activation of the orbicularis oculi muscle, and it is referred 
to as "the Duchenne Marker". Smiles with the Duchenne 
marker have been assumed to be spontaneous [13]. This 
defnition has been used in numerous psychological studies 
[3, 17, 42]. However, it has also been shown that this muscle 
is activated in both types of smiles [32, 45]. Recently, more 
reliable diferentiating features have been found. Dynamic 
aspects of facial expressions have been deemed critical for 

human perception. In particular, for subtle expressions, and 
when static information is of low quality [26]. Moreover, 
spontaneous smiles tend to last longer than posed smiles 
[8, 39], and have a fast and smooth onset [40], and apex 
coordination [15]. On the other hand, posed smiles have a 
larger amplitude [8, 39, 40]; diferent decay and rise durations 
and speeds [20, 30, 39], and diferent numbers of peaks [30]. 

The potential of computer vision (CV) [12] and electromyo-
graphy (EMG) [37] to distinguish between these smiles has 
already been shown. However, little is known about how 
these two technologies relate to each other. Simultaneous 
recordings have so far been to the detriment of CV. Tradi-
tionally, EMG research requires electrodes to be placed on 
top of the relevant muscle. This not only prevents the wearer 
from producing natural facial expressions, it also obstructs 
recordings of the face. This limitation has recently been over-
come by the use of wearables for measuring facial distal EMG 
[7, 18]. 
We present a direct comparison of these two methods to 

identify posed and spontaneous smiles. We hypothesize that 
they have diferent strengths. CV might be able to better 
discriminate overt facial expressions with fne spatial res-
olution, similar to human perception. On the other hand, 
EMG-based methods are potentially better at discriminating 
covert expression changes not perceivable through vision 
[44]. Specifcally, we hypothesize an information space as 
depicted in Figure 1. This space is described by using four hy-
potheses: (1) EMG-based identifcation is superior for covert 
behavior; (2) CV-based identifcation is superior for overt 
behavior where spatial resolution is important; (3) the per-
formance of a human judge is similar to that of CV, as it is 
based on visible behavior; (4) there is a shared information 
zone where all the proposed methods perform similarly. 

2 RELATED WORK 

Several surveys have summarized the methods available for 
automatic emotion recognition [6, 23, 47]. However, it is dif-
fcult to compare them due to the plethora of experimental 
paradigms, signal types, features, and classifcation schemes 
used to identify diferent combinations of emotions. Addi-
tionally, studies using simultaneous EMG and CV are rare 
due to the facial occlusion caused by traditional EMG. 

Computer vision-based methods 
Computer vision (CV) is the most widely used technique for 
identifying facial expressions or posture automatically [4]. 
The use of spatial patterns has been shown to achieve about 
90% accuracy in the task of distinguishing between posed and 
spontaneous smiles [48]. In particular, the publication of the 
UvA-NEMO database including 1240 videos of spontaneous 
and posed smiles [12] has triggered a renewed interest in 
identifying the diferences between posed and spontaneous 
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smiles and their dynamic characteristics [19]. State-of-the-
art methods have provided an identifcation accuracy up 
to 92.90% by using dynamic features based on lip and eye 
landmark movements, sometimes tailored to diferent age 
groups [12]. Other algorithms using spatio-temporal features 
as identifed by restricted Boltzmann machines have been 
able to achieve up to 97.34% accuracy on the UvA-NEMO 
database, and 86.32% in the Spontaneous vs. Posed Facial 
Expression (SPOS) database [49]. 

Electromyography-based methods 
The potential for using EMG to study diferent facial expres-
sions has been widely reported. This is accomplished either 
by placing recording electrodes on top of the relevant muscle 
[5, 15, 33, 34, 41, 44, 46], or with wearable devices that do 
not obstruct the face [7, 18]. Posed and spontaneous smiles 
can also be distinguished by examining diferent EMG fea-
tures. Surface EMG has revealed that spontaneous smiles 
have diferent magnitudes, speeds and durations [8, 40]. Fur-
thermore, when using a wearable device with distal EMG 
[37], spatial and magnitude feature analysis allows us to 
distinguish between spontaneous and posed smiles with an 
accuracy of about 74%. By employing spatio-temporal fea-
tures, the accuracy reached about 90%. 

Comparison of CV and EMG 

EMG has long been a promising technology for measuring 
unobservable facial behavior [44]. Simultaneous EMG and 
video recordings have shown that EMG onsets occur 0.23 s 
before lip corner movement. This makes EMG suitable for 
studying the fast reactions involved in posed and sponta-
neous expressions of emotion, which are believed to difer 
[8, 40, 41]. However, in these studies, the facial movements 
were somewhat restricted, and trials that included occlusion 
and head movements were discarded. These limitations can 
be overcome by using distal EMG, which does not obstruct 
the face. All in all, each technology might prove useful de-
pending on the intended application. Although wearable 
EMG only exerts slight pressure on the sides of the face, CV 
is defnitely less obtrusive than EMG because it does not 
require users to wear anything. However, CV is not robust to 
occlusion, head rotation, poor lighting or sudden movement. 

Human Perception 

Understanding another’s facial expressions is a critical social 
ability. Therefore, human perception of facial expressions 
has been extensively researched. It has also been argued that 
the message transmitted by each facial expression is as im-
portant as the actual ground truth under which they were 
elicited [11], as they transmit both biologically basic and so-
cially specifc messages [22]. Perception has also been shown 
to be closely linked to facial mimicry. When distinguishing 

between posed and spontaneous smiles, the facial mimicry 
reactions of the perceiver were stronger for Duchenne smiles 
[25]. Additionally, it has been argued that the presentation of 
dynamic stimuli signifcantly enhances the human discrim-
ination of posed and spontaneous smiles [26, 31]. Similar 
fndings have been reported for facial expressions of sur-
prise. The discrimination accuracy of human judges trying 
to distinguish between spontaneous and both improvised 
and rehearsed posed expressions was enhanced with dy-
namic stimuli. Nevertheless, only around 50% accuracy was 
achieved [50]. 

3 DATASET 

Video clips and EMG data of posed and spontaneous smiles 
recorded in [35] were used for data analysis. In addition, 
the data they reported on the perception of these smiles by 
human judges was used as a reference. This data set was 
chosen because, to the best of our knowledge, there are no 
other data sets available that contain facial videos and facial 
distal EMG recorded simultaneously during displays of posed 
and spontaneous smiles. 

Participants. 38 volunteers took part in the study (19 fe-
male, average age = 25.03 years old, SD = 3.83). Henceforth, 
these participants are referred to as “Producers” since they 
produced the smiles used for identifcation. 

Experimental Design. The experiment consisted of three 
blocks. The frst block or “Spontaneous Block” (S-B) was 
designed to induce a positive afective state, and therefore, 
elicit spontaneous smiles. S-B consisted of three 30 s silent 
humorous video clips presented in a counterbalanced order. 
The participants subsequently completed an Afect Grid [38] 
reporting how they felt while watching the videos. Then 
they video-coded their own facial expressions, indicating 
if the expression was posed or not. The second block or 
“Neutral Block” was designed to return the previously elicited 
positive afect to a neutral afect by having the participants 
watch a neutral-valenced video. The N-B video consisted 
of 18 pictures with likeability scores between 5.0 and 6.0 
taken from the International Afective Picture System (IAPS) 
[27], presented every 5 s, for a total of 90 s. Next, in the 
third block or “Posed Block” (P-B), participants were asked 
to make similar facial expressions to those that they made 
when watching the frst video in such a way that another 
person would not be able to guess whether or not the smiles 
were genuine. This type of smile was considered to be a posed 
smile that was intended to convey the impression of having 
fun. The P-B stimuli video consisted of 18 IAPS pictures 
with likeability scores between 4.0 and 5.0, presented every 
5 s. In other words, the participants had to watch a slightly 
unpleasant stimulus while trying to fake smiles of enjoyment. 
Next, they video-coded their own facial expressions. All the 
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participants experienced the experiment blocks in the same 
order. 

Measurements. Videos of the participants’ facial expres-
sions were recorded using a Canon Ivis 52 at 30FPS. A wear-
able device with four unobtrusive channels of distal facial 
EMG was used (Figure 1). This device has been shown to 
reliably identify smiles in diferent situations [16, 18, 36, 43]. 

Collected data. According to the Afect Grid answers, va-
lence scores were signifcantly higher in the spontaneous 
block than in the posed block (F (1,64) = 11.47, p < .01, η2 

p
= 0.64). This suggests that the producers felt more positive 
in the spontaneous block, and that they had to smile in the 
posed block even if they had slightly negative feelings. On 
the other hand, arousal did not difer among the experiment 
blocks (F (1,64) = 0.50, p > .05, η2 = 0.22). According to their p
own video coding, 272 smiles were elicited from 32 partici-
pants. 127 were labeled as spontaneous and occurred in the 
S-B. 145 were posed and occurred in the P-B. In addition to 
the participant’s own video coding, two independent raters 
labeled the videos. When judging whether participants were 
smiling or not, the Fleiss’ Kappa indicating the agreement 
between the two coders and the participant’s own video cod-
ing was 0.57. However, the agreement fell to to 0.13 when 
the task was to determine whether the displayed expressions 
were posed or spontaneous. Therefore, both experimental 
design and self-report were considered when establishing 
the ground truth labels. For a smile to be spontaneous it 
should be labeled as spontaneous by the participant and 
have occurred in the S-B. Similarly, for posed smiles, only 
those labeled as posed and occurring in the P-B were selected. 
Following this criterion, only 27 of the participants showed 
at least two smiles of each type. 
In this dataset, the most relevant features are magnitude 

and rise and decay speed. These are calculated from a neu-
tral expression to the apex of the smile and back to a neutral 
expression as measured from the EMG activity [35]. It is im-
portant to notice that the elicited posed smiles are diferent 
from those in previous studies. The most common elicitation 
paradigm is to directly ask the producers to smile. However, 
when posed smiles are requested with a command, the tem-
poral dynamics are afected by the duration of the command 
itself. Dynamic information is critical for both human and 
machine perception [26, 50]. Hence, other more ecologically 
valid posed smiles were elicited. The producers voluntarily 
produced a smile that did not match the elicited afective 
inner state. 

Human Judgment. 73 volunteers unknown to the produc-
ers took part in a separate study (37 female, average age = 
29 years old, SD = 11). Henceforth, these participants are 
called “Perceivers”. The perceivers watched 54 video clips of 

Table 1: Features used for comparison. 

Spatial 
Features 

Spatio-temporal 
Features 

CV -Intensity AU06 
-Intensity AU12 

-Duration 
-Rise and decay speed 
-Magnitude 

EMG -IC RMS 
from four 

EMG channels 

-Duration 
-Rise and decay speed 
-Magnitude 

smiles (27 posed smiles and 27 spontaneous smiles) selected 
from smiles elicited as described above. All the perceivers 
watched all the selected smiles only once in random order. 
After watching each video clip, the perceivers labeled each 
smile as spontaneous or posed. A one sample t-test showed 
that their labeling accuracy was signifcantly diferent from 
chance level (M = 0.50, t(72) = 8.80, p < .01, 95% CI [.56 .59], 
d = 0.58). 

4 ANALYSIS 

The data obtained from the 27 producers who produced at 
least two smiles of each type was selected for analysis. The 
main aim of the analysis was to compare the EMG- and 
CV-based methods. Therefore, simple algorithms applicable 
to both methodologies were preferred over more complex 
classifers. 

Two types of features were used for each of the two modal-
ities (Table 1). First, spatial features are magnitude metrics 
calculated sample by sample, independently of the number of 
smiles. Second, spatio-temporal features are obtained from 
each smile sample. Thus, the total number of data points 
available for the spatial algorithm (1,313,528 times four chan-
nels for EMG, and 230,342 times two AUs for CV for all 
smiles and all subjects) is higher than the data available for 
the spatio-temporal version (245 smiles of both types by four 
features by all subjects). 

Feature extraction EMG. A similar algorithm to that de-
scribed in [37] was used to calculate both the spatial and the 
spatio-temporal features of diferent smiles. In both cases the 
surface EMG was recorded from four channels at a sampling 
rate of 1 kHz . First, the data was band-pass fltered from 5 to 
350 Hz. Second, it was notch fltered at harmonics of 50 Hz 
up to 350 Hz. Third, the EMG signal was linearly detrended 
to prevent drifts in the signal from contributing excessively 
to classifer performance. Next, the signals were decomposed 
using Independent Component Analysis (ICA) [9, 21] to sep-
arate the distal EMG from diferent source muscles. 
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Figure 2: Classifcation results achieved with computer vision (CV) and electromyography (EMG) with spatial and spatio-
temporal features, and by human judges. EMG seems able to identify covert behavior that is not visually discernible as sug-
gested by its performance. CV seems able to identify visible dynamics that human judges could not account for. Asterisks 
represent signifcant diferences in the average accuracies. 
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Figure 3: Average accuracy achieved by CV and EMG with spatial and spatio-temporal features, and by human judges. The spa-
tial features model was also trained in a subject independent cross-validation. The performance is very similar across modali-
ties, both in the subject-dependent and subject-independent models. The performance deteriorates for a subject independent 
model, which suggests marked individual diferences probably due to diferences in smiling style and muscle anatomy. 

(1) Spatial features. (1) Absolute value was applied to each 
independent component (IC). Then, their root-mean 
square (RMS) was calculated using overlapping 100 ms 
windows and sliding one sample at a time. 

(2) Spatio-temporal features. An envelope was ftted to the 
rectifed ICs by smoothing the data with an averaging 
non-overlapping window of 100 ms, and a Savitzky-
Golay flter with a 5th order polynomial and with 41 
as the frame length. Then the maximum and minimum 
points of the envelope were identifed. The maximum 
magnitude, rise time, decay time, rise speed, decay 
speed, and duration of the smile were calculated using 
such peaks. 

Feature extraction CV. Basis features were calculated using 
OpenFace Toolkit 2.0 [1], a deep-learning, state-of-the-art 
facial analyzer. 
(1) Spatial features. The intensities of AU6 and AU12 cal-

culated frame by frame by OpenFace 2.0 were used as 
input for the classifer. 

(2) Spatio-temporal features. Landmarks for lips and eye 
corners as calculated by OpenFace 2.0 were corrected 
for head orientation in each frame. Then the displace-
ment of relevant landmarks with respect to the frst 
frame of the video was calculated. This is the proce-
dure for 3D landmark correction described in [19]. The 
lip landmarks we used were 48 and 54. We chose eye 
landmarks of 37, 40, 44, and 47. Landmark displace-
ment was then smoothed in a similar fashion as with 
the EMG algorithm. Only the averaging window was 
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slid one frame at a time, to avoid data undersampling. 
Analogously, peak detection was performed, and the 
features of maximum magnitude, rise time, decay time, 
rise speed, decay speed, and duration of the smile were 
calculated and used as input for the classifcation. 

Classification. Not all participants displayed the same num-
ber of posed and spontaneous smiles, and the smile durations 
varied greatly. Therefore, the feature vectors of the majority 
class were undersampled to match the size of the minority 
class. We used a support vector machine (SVM), with a radial 
basis kernel, trained with each feature set. The best hyper-
parameter set was chosen automatically with the ftcsvm 
Matlab function, independently for each modality. In both 
the EMG and CV models, subject dependent cross-validation 
was used with 85% training and 15% validation data. A test 
set was not separated from the cross-validation train and val-
idation sets in the subject-dependent models because of the 
limited number of smiles of some of the producers. Addition-
ally, subject independent SVM was ftted in a cross-validation 
and used with 85% training and 15% validation data from 
the N-1 producers. The data of one producer was left out 
for use in testing the SVM model built with the other N-1 
producer’s data. This procedure was repeated for all the pro-
ducers. The reported subject-independent accuracy is the 
accuracy achieved when each producer was the test pro-
ducer. Finally, Spearman’s correlation coefcients between 
the results of each modality and feature type were calculated. 

5 RESULTS 

The mean accuracy of the subject-dependent spatial features 
was 88% (SD = 7%) for CV, and 99% (SD = 1%) for EMG. With 
the subject-dependent spatio-temporal features, it was 87% 
(SD = 4%) for CV, and 91% (SD = 5%) for EMG. The accuracy 
of the classifcation of each producer for each model is shown 
in Figure 2. As regards human judgment, the accuracy of 
each point is the average for all the judges (perceivers) per 
target (producers). From the plot it can be observed that, for 
the spatial features, EMG accuracy is high even when the 
accuracy with CV is lower. Wilcoxon signed-rank tests indi-
cated that the diference between EMG and CV is signifcant 
for both the spatial (V = 0, p < .01) and the spatio-temporal 
features (V = 83.5, p < .05). Similar tests were used to as-
sess the diferences between feature-type per modality. With 
EMG, the spatial features performed signifcantly better than 
the spatio-temporal features (V = 293.5, p < .01). However, 
the diference was not signifcant for CV (V = 0, p > .05). 
Moreover, EMG accuracy is consistently higher than human 
accuracy, both in the magnitude feature space (V = 378, p 
< .01) and the spatio-temporal one (V = 0, p < .01). CV ap-
pears more consistent with human perception in both types 
of features. However, the diferences in accuracy are also 

signifcant in both the spatial (V = 378, p < .01) and spatio-
temporal (V = 0, p < .01) cases. None of the cross-modality 
pairs showed a strong correlation for either spatial or spatio-
temporal features (|r| < .26, p > .10). 
The mean accuracy of the subject-independent spatial 

features model was 52% (SD = 8%) for CV, and 49% (SD = 7%) 
for EMG in the test set (Figure 3). 

6 DISCUSSION 

This paper aimed to shed light on information available 
through both CV and EMG measurements, and to compare 
it with human perception of the same data. For this purpose, 
comparable features for both modalities were used. Addi-
tionally, the same SVM algorithm with subject-dependent 
cross-validation was applied for both modalities (Figure 2 
and 3). EMG appears to be the best performing modality, 
probably because it picks up covert behaviors that are invisi-
ble to the naked eye. Muscle activation can occur that inhibits 
facial movement [44], and therefore no visible information is 
available. Moreover, the performance of the EMG classifers 
achieved with this data set appears opposite to that achieved 
in earlier work [37]. Previously, spatio-temporal features 
outperformed spatial features. This might be because the 
posed smiles elicited in this experiment are smiles faking a 
positive valence even if their self-report described a slightly 
negative valence. These smiles might be diferent from smiles 
elicited under instruction from an experimenter or smiles 
produced voluntarily for the camera. The magnitudes of the 
posed smiles elicited here appear weaker. Additionally, when 
smiles are performed based on an instruction, the instruction 
itself might alter the duration and other temporal dynamics 
of the smile. The elicitation method used in this data set 
carefully avoided this problem. 
With the spatio-temporal features, the data is limited to 

the number of smiles shown, which is independent of the 
modality. Therefore, CV and EMG perform very similarly. On 
the other hand, with the spatial features, the amount of data is 
dependent on the sampling rate of the sensor used. Whereas 
EMG was sampled at 1kHz, the video data contained only 30 
FPS. EMG might have had an advantage by measuring more 
samples per smile, increasing the diference in performance 
between CV and EMG. Future work should assess whether or 
not the performance of EMG-based distinction is afected if 
the EMG data is undersampled to match the camera’s speed. 
Even though CV and human judges use the same visual 

features, CV outperforms human judges in distinguishing 
posed and spontaneous smiles. Moreover, the EMG perfor-
mance is constantly higher than human performance for the 
subject-dependent model. The lack of correlation between 
the modality-feature pairs in the subject-dependent models 
suggests that indeed EMG and CV are complementary. The 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 149 Page 6



fact that there is no high correlation between CV and hu- 7 LIMITATIONS OF THIS STUDY 
mans probably suggests that humans rely on context and 
movements other than AU06 and AU12. The smile video clips 
shown to the perceivers lack other contextual information on 
which humans usually rely to make their judgments. Finally, 
the ground-truth labeling was based on tags assigned by the 
producers. Since they are not expert coders, they might have 
mainly tagged expression apexes. Therefore, the smile video 
clips might have lacked certain critical dynamics related to 
the start and end of the smile for perceivers to achieve a sim-
ilar result to CV. On the other hand, the subject-dependent 
automatic models were tailored to each producer. Human 
judges did not know the producers, and they received no 
feedback during the task. Thus, the model they used to make 
their decisions depended on their previous experiences with 
other people. This might explain their modest performance 
compared with automatic recognition. This is also in line 
with the results obtained with subject independent mod-
els. The individual diferences in smiling style and muscle 
anatomy are possible reasons for the drop in accuracy to 
roughly chance level. EMG is known to be dependent on 
each person’s physiognomy, therefore large individual dif-
ferences are expected. However, the low CV performance is 
surprising, given that other studies have achieved very high 
performances independently of the person smiling [12, 49]. 
All in all, CV and EMG appear to be measuring comple-

mentary information that can be useful depending on the 
situation. Whereas CV is easy to set, non-obstructive, and 
sufciently accurate, state-of-the-art algorithms are too com-
putationally expensive to be useful in online settings or with 
embedded devices. On the other hand, traditional EMG is too 
obstructive to be of any practical use during user evaluations. 
However, wearable technologies capable of measuring EMG 
distally have improved EMG’s usability. Now it is possible 
to quantify user experience with minimum obtrusion. More-
over, wearable EMG technology might be advantageous in 
situations where facial expressions are suppressed by the 
wearer, when there is a high degree of movement and occlu-
sion, and when high performance is required in an online set-
ting. As wearable technologies improve, EMG technologies 
may become increasingly relevant for assessing behaviors 
imperceptible to CV or humans. 
Finally, this study suggested that, at least in the subject-

dependent case, a simple classifer sufces. The use of simpler, 
faster algorithms will become more relevant as we move to 
real-time, embedded identifcation applications. For example, 
smarter experience sampling intervals for qualitative ESM 
diary entries could be triggered by automatically detected 
signifcant events. 

This work presented only one method of comparing the 
EMG- and CV-based identifcation of posed and spontaneous 
smiles. Many other methods can be tried for both modalities 
with a view to improving performance [2]. However, we 
strove to make the comparison as fair as possible by using 
the same features and classifcation methods. It is difcult 
to achieve a good comparison from the literature due to 
methodological diferences. This is the frst study to directly 
compare CV and distal EMG. By using a similar classifca-
tion technique for both modalities, we attempted to explore 
individual diferences in smiling behavior and the visibility 
of the information selected by each modality. 

Moreover, the EMG’s high performance has to be carefully 
interpreted due to possible bias in the results. First, the test 
set was not separated from the cross-validation train and the 
validation sets in the subject-dependent models due to the 
limited amount of data. Thus, there is still a possibility that 
our model is overftted. Second, the experimental design for 
gathering the data might have infuenced the results, as the 
spontaneous block always preceded the posed block. This 
choice was made to ensure that the producer’s smiles were 
spontaneous. To mitigate the efects of this block design, 
trends in the EMG signal were removed during the analysis. 
However, the order efect might have infuenced the EMG 
models. Nevertheless, this possibility is small, as the results 
achieved by CV and EMG are similar. Furthermore, the EMG 
preprocessing is based on [18, 36, 37]. The reported accuracy 
is consistently around 90% for diferent types of smiles and 
in counterbalanced experimental designs. 

8 CONCLUSIONS AND FUTURE WORK 

We compared the performance of CV and EMG measure-
ments in the task of distinguishing posed and spontaneous 
smiles. The highest performance was achieved with EMG 
and spatial features. This might be due to the nature of the 
posed smiles elicited in this data set. Hence, further research 
should explore diferences between diferent types of posed 
smiles. Furthermore, the results showed that EMG has an ad-
vantage as regards identifying covert behavior not available 
through vision. Future work should explore in more detail 
the infuence of factors such as sampling rate and training 
scheme. Moreover, CV appears able to identify visible dy-
namic features that human judges cannot account for. This 
sheds light on the role of non-observable behavior in dis-
tinguishing afect-related smiles from posed smiles to avoid 
bias during automatic user experience assessments. 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 149 Page 7



REFERENCES 
[1] Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe 

Morency. 2018. OpenFace 2.0: facial behavior analysis toolkit. In 
2018 13th IEEE International Conference on Automatic Face & Gesture 
Recognition (FG 2018). IEEE, 59–66. 

[2] Marian Stewart Bartlett, Gwen C. Littlewort, Mark G. Frank, and Kang 
Lee. 2014. Automatic decoding of facial movements reveals deceptive 
pain expressions. Current Biology 24, 7 (mar 2014), 738–743. https: 
//doi.org/10.1016/J.CUB.2014.02.009 

[3] Michael J. Bernstein, Donald F. Sacco, Christina M. Brown, Steven G. 
Young, and Heather M. Claypool. 2010. A preference for genuine smiles 
following social exclusion. Journal of Experimental Social Psychology 
46, 1 (2010), 196–199. 

[4] Vinay Bettadapura. 2012. Face expression recognition and analysis: 
the state of the art. CoRR (2012), 1–27. arXiv:1203.6722 

[5] John T. Cacioppo and Louis G. Tassinary. 1990. Inferring psychological 
signifcance from physiological signals. American Psychologist 45, 1 
(1990), 16–28. 

[6] Rafael A. Calvo and Sidney D. Mello. 2010. Afect detection: an inter-
disciplinary review of models, methods, and their applications. IEEE 
Transactions on Afective Computing 1, September (2010), 18–37. 

[7] Yumiao Chen, Zhongliang Yang, and Jiangping Wang. 2015. Eyebrow 
emotional expression recognition using surface EMG signals. Neuro-
computing 168 (2015), 871–879. 

[8] J. F. Cohn and K.L. Schmidt. 2004. The timing of facial motion in posed 
and spontaneous smiles. International Journal of Wavelets, Multireso-
lution and Information Processing 2 (2004), 121–132. 

[9] Pierre Comon. 1994. Independent component analysis, a new con-
cept? Signal Processing 36, 36 (1994). http://mlsp.cs.cmu.edu/courses/ 
fall2012/lectures/ICA.pdf 

[10] Mihaly Csikszentmihalyi and Reed Larson. 2014. Validity and reliability 
of the Experience-Sampling Method. In Flow and the Foundations of 
Positive Psychology. Springer Netherlands, Dordrecht, 35–54. 

[11] Amy Dawel, Luke Wright, Jessica Irons, Rachael Dumbleton, Romina 
Palermo, Richard O’Kearney, and Elinor McKone. 2017. Perceived 
emotion genuineness: normative ratings for popular facial expression 
stimuli and the development of perceived-as-genuine and perceived-
as-fake sets. Behavior Research Methods 49, 4 (2017), 1539–1562. 

[12] Hamdi Dibeklioglu, Albert Ali Salah, and Theo Gevers. 2015. Recogni-
tion of genuine smiles. IEEE Transactions on Multimedia 17, 3 (2015), 
279–294. 

[13] Guillaume-Benjamin Duchenne. 1862. Mécanisme de la Physionomie 
Humaine. Jules Renouard, Paris. 

[14] Paul Ekman, Wallace Friesen, and Joseph Hager. 2002. FACS investiga-
tor’s guide. 

[15] Paul Ekman and Erika Rosenberg. 2005. What the face reveals: Basic 
and Applied Studies of Spontaneous Expression Using the Facial Action 
Coding System (FACS) (second edition ed.). Oxford University Press. 
1–20, 453–486 pages. 

[16] Atsushi Funahashi, Anna Gruebler, Takeshi Aoki, Hideki Kadone, and 
Kenji Suzuki. 2014. Brief report: the smiles of a child with autism 
spectrum disorder during an animal-assisted activity may facilitate 
social positive behaviors - Quantitative analysis with smile-detecting 
interface. Journal of Autism and Developmental Disorders 44, 3 (2014), 
685–693. 

[17] Reuma Gadassi and Nilly Mor. 2016. Confusing acceptance and mere 
politeness: Depression and sensitivity to Duchenne smiles. Journal of 
Behavior Therapy and Experimental Psychiatry 50 (2016), 8–14. 

[18] Anna Gruebler and Kenji Suzuki. 2014. Design of a Wearable De-
vice for Reading Positive Expressions from Facial EMG Signals. IEEE 
Transactions on Afective Computing PP, 99 (2014), 1–1. 

[19] Hui Guo, Xiao-hui Zhang, Jun Liang, and Wen-jing Yan. 2018. The 
dynamic features of lip corners in genuine and posed smiles. Frontiers 
in psychology 9, February (2018), 1–11. 

[20] Mohammed Hoque, Louis Philippe Morency, and Rosalind W. Picard. 
2011. Are you friendly or just polite? - Analysis of smiles in sponta-
neous face-to-face interactions. In Afective Computing and Intelligent 
Interaction. Lecture Notes in Computer Science, Sidney D’Mello (Ed.). 
Vol. 6974. Springer Berlin Heidelberg, 135–144. 

[21] Aapo Hyvärinen and Erkki Oja. 2000. Independent component analysis: 
algorithms and applications. Neural networks: the ofcial journal of 
the International Neural Network Society 13, 4-5 (2000), 411–30. https: 
//doi.org/10.1016/S0893-6080(00)00026-5 

[22] Rachael E. Jack, Oliver G.B. Garrod, and Philippe G. Schyns. 2014. 
Dynamic facial expressions of emotion transmit an evolving hierarchy 
of signals over time. Current Biology 24, 2 (2014), 187–192. 

[23] Joris H. Janssen, Paul Tacken, J.J.G. (Gert-Jan) de Vries, Egon L. van den 
Broek, Joyce H.D.M. Westerink, Pim Haselager, and Wijnand A. IJssel-
steijn. 2013. Machines outperform laypersons in recognizing emotions 
elicited by autobiographical recollection. Human–Computer Interaction 
28, 6 (2013), 479–517. https://doi.org/10.1080/07370024.2012.755421 

[24] Jussi P.P. Jokinen. 2015. Emotional user experience: traits, events, and 
states. International Journal of Human Computer Studies 76 (2015), 
67–77. 

[25] Eva G. Krumhuber, Katja U. Likowski, and Peter Weyers. 2014. Facial 
mimicry of spontaneous and deliberate Duchenne and Non-Duchenne 
smiles. Journal of Nonverbal Behavior 38, 1 (2014), 1–11. 

[26] Eva G Krumhuber and Antony S. R. Manstead. 2013. Efects of dynamic 
aspects of facial expressions: a review. Emotion Review 5, 1 (2013), 
41–46. 

[27] P.J. Lang, M.M. Bradley, and B.N. Cuthbert. 2008. International Af-
fective Picture System (IAPS). Technical Report. University of Florida, 
Gainesville, FL. arXiv:0005-7916(93)E0016-Z 

[28] Reed Larson and Mihaly Csikszentmihalyi. 1983. The Experience Sam-
pling Method. New Directions for Methodology of Social & Behavioral 
Science 15 (1983), 41–56. 

[29] Ji-Ye Mao, Karel Vredenburg, Paul W. Smith, and Tom Carey. 2005. The 
state of user-centered design practice. Commun. ACM 48, 3 (2005), 
105–109. 

[30] Mohammad Mavadati, Peyten Sanger, Mohammad H Mahoor, and 
S York Street. 2016. Extended DISFA dataset: investigating posed and 
spontaneous facial expressions. , 8 pages. 

[31] Shushi Namba, Russell S. Kabir, Makoto Miyatani, and Takashi Nakao. 
2018. Dynamic displays enhance the ability to discriminate genuine 
and posed facial expressions of emotion. Frontiers in Psychology 9 
(2018), 672. 

[32] Shushi Namba, Shoko Makihara, Russell S. Kabir, Makoto Miyatani, 
and Takashi Nakao. 2016. Spontaneous facial expressions are diferent 
from posed facial expressions: morphological properties and dynamic 
sequences. , 13 pages. 

[33] Lindsay M. Oberman, Piotr Winkielman, and Vilayanur S. Ramachan-
dran. 2007. Face to face: blocking facial mimicry can selectively impair 
recognition of emotional expressions. Social neuroscience 2, 3-4 (2007), 
167–78. 

[34] Lindsay M. Oberman, Piotr Winkielman, and Vilayanur S. Ramachan-
dran. 2009. Slow echo: facial EMG evidence for the delay of sponta-
neous, but not voluntary, emotional mimicry in children with autism 
spectrum disorders. 4 (2009), 510–520. https://doi.org/10.1111/j. 
1467-7687.2008.00796.x 

[35] Monica Perusquía-Hernández, Saho Ayabe-Kanamura, and Kenji 
Suzuki. 2018. Human perception and biosignal-based identifcation of 
posed and spontaneous smiles. Manuscript in preparation. (2018). 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 149 Page 8

https://doi.org/10.1016/J.CUB.2014.02.009
https://doi.org/10.1016/J.CUB.2014.02.009
http://arxiv.org/abs/1203.6722
http://mlsp.cs.cmu.edu/courses/fall2012/lectures/ICA.pdf
http://mlsp.cs.cmu.edu/courses/fall2012/lectures/ICA.pdf
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1080/07370024.2012.755421
http://arxiv.org/abs/0005-7916(93)E0016-Z
https://doi.org/10.1111/j.1467-7687.2008.00796.x
https://doi.org/10.1111/j.1467-7687.2008.00796.x


[36] Monica Perusquía-Hernández, Masakazu Hirokawa, and Kenji Suzuki. 
2017. A wearable device for fast and subtle spontaneous smile recog-
nition. IEEE Transactions on Afective Computing 8, 4 (2017), 522–533. 

[37] Monica Perusquía-Hernández, Masakazu Hirokawa, and Kenji Suzuki. 
2017. Spontaneous and posed smile recognition based on spatial and 
temporal patterns of facial EMG. In Afective Computing and Intelligent 
Interaction. 537–541. 

[38] James A. Russell, Anna Weiss, and Gerald A. Mendelsohn. 1989. Afect 
Grid: a single-item scale of pleasure and arousal. Journal of Personality 
and Social Psychology 57, 3 (1989), 493–502. 

[39] Karen Schmidt, Sharika Bhattacharya, and Rachel Denlinger. 2009. 
Comparison of deliberate and spontaneous facial movement in smiles 
and eyebrow raises. Nonverbal Behaviour 33, 1 (2009), 35–45. 

[40] Karen L. Schmidt, Zara Ambadar, Jefrey F. Cohn, and L. Ian Reed. 
2006. Movement diferences between deliberate and spontaneous 
facial expressions: zygomaticus major action in smiling. Journal of 
Nonverbal Behavior 30, 1 (2006), 37–52. 

[41] K. L. Schmidt and J. F. Cohn. 2001. Dynamics of facial expression: 
normative characteristics and individual diferences. In IEEE Proceed-
ings of International Conference on Multimedia and Expo. IEEE, Tokyo, 
728–731. 

[42] Ruiting Song, Harriet Over, and Malinda Carpenter. 2016. Young 
children discriminate genuine from fake smiles and expect people 
displaying genuine smiles to be more prosocial. Evolution and Human 
Behavior 37, 6 (2016), 490–501. 

[43] Yuji Takano and Kenji Suzuki. 2014. Afective communication aid 
using wearable devices based on biosignals. In Proceedings of the 2014 

conference on Interaction design and children - IDC ’14. ACM Press, New 
York, New York, USA, 213–216. 

[44] Louis G. Tassinary and John T. Cacioppo. 1992. Unobservable Facial 
Actions and Emotion. Psychological Science 3, 1 (1992), 28–33. 

[45] Pascal Thibault, Manon Levesque, Pierre Gosselin, and Ursula Hess. 
2012. The Duchenne marker is not a universal signal of smile authen-
ticity - but it can be learned! Social Psychology 43, 4 (2012), 215–221. 
arXiv:arXiv:1011.1669v3 

[46] Anton van Boxtel. 2010. Facial EMG as a tool for inferring afective 
states. In Proceedings of Measuring Behavior, AJ Spink, F Grieco, Krips 
OE, LWS Loijens, LPJJ Noldus, and PH Zimmerman (Eds.). Eindhoven, 
104–108. 

[47] Alessandro Vinciarelli, Maja Pantic, and Herve Bourlard. 2009. Social 
signal processing: survey of an emerging domain. Image and Vision 
Computing 27, 12 (2009), 1743–1759. 

[48] Shangfei Wang, Chongliang Wu, and Qiang Ji. 2016. Capturing global 
spatial patterns for distinguishing posed and spontaneous expressions. 
Computer Vision and Image Understanding 147 (jun 2016), 69–76. https: 
//doi.org/10.1016/J.CVIU.2015.08.007 

[49] Jiajia Yang and Shangfei Wang. 2017. Capturing spatial and temporal 
patterns for distinguishing between posed and spontaneous expres-
sions. In Proceedings of the 2017 ACM on Multimedia Conference - MM 
’17. ACM Press, New York, New York, USA, 469–477. 

[50] Mircea Zloteanu, Eva G. Krumhuber, and Daniel C. Richardson. 2018. 
Detecting genuine and deliberate displays of surprise in static and 
dynamic faces. Frontiers in Psychology 9 (2018), 1184. 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 149 Page 9

http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1016/J.CVIU.2015.08.007
https://doi.org/10.1016/J.CVIU.2015.08.007

	Abstract
	1 Introduction
	2 Related Work
	Computer vision-based methods
	Electromyography-based methods
	Comparison of CV and EMG
	Human Perception

	3 Dataset
	4 Analysis
	5 Results
	6 Discussion
	7 Limitations of this study
	8 Conclusions and Future Work
	References



